Skip to main content

Can we learn anything from video games?

My little one's teacher often tells me he can't concentrate in class. He is always up and about talking to his peers., He scores about average marks in tests and hardly likes to write. Mind you I am not worried. I listen to him with awe as he plays on the key board and his dry sense of humour keeps me smiling. He is 9 years old and came second runners-up in the video game competition , beating boys far older than him. I admit that I was proud but I did feel he was playing a bit too much at home. But then I got thinking.

What is it about video games that seemingly make kids more resilient to challenges and adversity than in real life classroom problem solving situations?

What makes them persevere through tasks even though it can be as difficult as solving a real life math problem.
Why don’t we necessarily see the same resolve and self-efficacy when solving a math story problem as we do when needing to conquer, say, a virtual war setting?

I wish my lesson plans caould be as interesting as those video games.
When I ask my kids why they liked them so much, they shrug and say, "Dunno."
Guess I have to figure it out myself!



Comments

Popular posts from this blog

Generalization-Designing Your Lessons for Conceptual Understanding (Part 3)

This post is the third of our blog post series on how to design lessons for conceptual understanding. Part 1 here Part 2 here Strategy 3 : Generalizations You may have come across Lynn Erickson's diagram on the structure of knowledge. In my IB workshop's I always like to present the avocado model alongside this diagram when I am talking about facts. The intention of inquiry-based teaching and conceptually-driven understanding (or Concept-based inquiry- whatever terminology suits your fancy)  is to enable students to make generalizations. In other words, can they transfer their learning to a new context because they have understood what they learnt.  In order to make generalizations, we need to first plan lessons that help students acquire facts/topics that are interesting  and worth knowing. Bringing in local and global issues that are relevant to the topic help students as they begin to compare the topics and see emerging patterns. Remember, facts and concepts have a syn...

Classification -Designing Your Lessons for Conceptual Understanding (Part 1)

In this series, we will discuss how we can design lessons for conceptual understanding. Having recently completed an upskilling course with IB, I felt we may all benefit from looking at some of these strategies and how they might look like in our PYP classrooms. Strategy 1: Classification    Source: Ibo.org In this post, I will be focusing on the research-backed strategy, "classification".  Chadwick (2009) highlights that classification helps develop conceptual understanding by allowing students to organize information, recognize patterns, and understand relationships among concepts.  Here are some examples across several disciplines on how I have used tools to classify. Math Class 1) In my math class (Grade 3) instead of having students simply rote learn the names of the shapes and their properties, have them sort the shapes  based on the number of sides, angles and symmetry. Even better, use the Concept Attainment Strategy (I keep returning to this strategy be...

Concepts-In-Use: Designing your lessons for Conceptual Understanding (Part 6)

  Concepts-In Use www.ibo.org In this post, one more strategy takes center stage when it comes to designing lessons that aid conceptual understanding in our students: Concept-In-Use. This strategy should be used once several concepts have been covered in class.  A great way to know whether your students are internalizing the concepts is to ask them to explain the connections between two concepts. For example:  In Math Ask them to convert a fraction to a percentage.  Or a percentage to a decimal.  Can they clearly explain the connection?  Can they use drawings to support their explanation? Can they articulate the difference between a prism and a pyramid.  How are they same?  How are they different? How can you represent data visually?  Bar graphs, pictographs, line charts are all concepts. As a designer of conceptual lessons, a teacher needs to be keenly aware of the connections between concepts.  For instance, is the Grade 3 teacher awar...